Search
A Submartingale has uniformly Bounded First Moment iff it has uniformly Bounded Positive Moment
Last updated
Nov 1, 2022
# Statement
Let (Ω,B,P) be a Probability Space
Probability Space
...
11/7/2022
. Let $(X_{n}){n \geq 1}$ be a discrete-time
Discrete-Time Process
Definition
A is a for which the totally ordere is N.
Other Outlinks
...
11/7/2022
Submartingale
Submartingale
Definition 1
Let (Ω,A,P) be a . Let X:Ω→RT be an wrt $\mathcal{F}{*} :=...
11/7/2022
wrt Discrete-Time Filtration
Discrete-Time Filtration
Definition
Let (Ω,A,P) be a . The Collectio F={Bn:n∈N} is a if...
11/7/2022
$\mathcal{F}{*} := (\mathcal{F}{n} \subset \mathcal{B}){n \in \mathbb{N}}.Then\sup\limits_{n \geq 1} \mathbb{E}(X_{n})^{+} < \infty$ If and Only If
If and Only If
...
11/7/2022
n≥1supE∣Xn∣<∞.
# Proof
(⇒): Because $(X_{n}){n \geq 1}$ is a Submartingale
Submartingale
Definition 1
Let (Ω,A,P) be a . Let X:Ω→RT be an wrt $\mathcal{F}{*} :=...
11/7/2022
and Submartingales have Non-Decreasing Expectation, ∀n≥1,
$$\begin{align*}
&\mathbb{E}(X{n}) \geq \mathbb{E}(X_{1})\\ \Rightarrow&\mathbb{E}(X_{n})^{+} - \mathbb{E}(X_{n})^{-} \geq \mathbb{E}(X_{1})\\ \Rightarrow&\mathbb{E}(X_{n})^{+} - \mathbb{E}(X_{1}) \geq \mathbb{E}(X_{n})^{-} \\ \Rightarrow&\infty > \sup\limits_{n \geq 1} \mathbb{E}(X_{n})^{+} - \mathbb{E}(X_{1}) \geq \sup\limits_{n \geq 1} \mathbb{E}(X_{n})^{-}
\end{align*}$$
Thus,
n≥1supE∣Xn∣=n≥1sup(E(Xn)++E(Xn)−)≤n≥1sup(E(Xn)+)+n≥1sup(E(Xn)−)<∞
✓
(⇐): This follows because
∞>n≥1supE∣Xn∣≥n≥1sup(E(Xn)++E(Xn)−)≥n≥1supE(Xn)+
✓ ■