Absolute Convergence
# Definition
Let $(X, ||\cdot||)$ be a Normed Vector Space and let $({x}{n}){n=1}^{\infty} \subset X$. We say the Series $\sum\limits_{n=1}^{\infty} x_{n}$ converges absolutely if $\sum\limits_{n=1}^{\infty} ||x_{n}||$ converges in $\mathbb{R}$.