Abhijeet Mulgund's Personal Webpage

Search

Search IconIcon to open search

All Simple Functions can be Written in Standard Form

Last updated Nov 1, 2022

# Statement

Let ϕ:XCn\phi: X \to \mathbb{C}^{n} be a Simple Function

Simple Function

Definition Let ϕ:XCn\phi : X \to \mathbb{C}^{n} be a for some XX and nNn \in \mathbb{N}. Then ϕ\phi is...

11/7/2022

. Let F=ϕ(X)F = \phi(X) (which is a Finite Set

...

11/7/2022

). Let Ai=ϕ1(ai)X:aiF{A_{i}} = {\phi^{-1}({a_{i}}) \subset X : a_{i} \in F}. Then Ai{A_{i}} Partition

Partition

Definition Let XX be a . A SP(X)\mathcal{S} \subset \mathcal{P}(X) of XX is a collection of subsets of...

11/7/2022

s XX and we can write

ϕ=i=1Fai1Ai\phi = \sum\limits_{i=1}^{|F|} a_{i}1_{A_{i}}

# Proof

To establish that Ai{A_{i}} partitions XX, we show that

  1. the collection is Mutually Disjoint

    Mutually Disjoint

    Definition Let {Ai}iI\{A{i}\}{i \in I} be a collectio of s indexe by II. We say {Ai}iI\{A{i}\}{i \in I} is if...

    11/7/2022

    .
  2. the union

    Set Union

    Definition 1 Let AA, BB be s. Then AB:={x:xAxB}A \cup B := \{x : x \in A \vee x \in B\}. Proof...

    11/7/2022

    of the collection is XX.

This is all we need to show since AiP(X){A_{i}} \subset \mathcal{P}(X) by construction. To see (1) observe that for i,j[F]i, j \in [|F|] s.t. iji \neq j we have that

AiAj=ϕ1(ai)ϕ1(aj)=ϕ1(aiaj)=ϕ1()=\begin{align*} A_{i} \cap A_{j} &= \phi^{-1}({a_{i}}) \cap \phi^{-1}({a_{j}})\\ &=\phi^{-1}({a_{i}} \cap {a_{j}})\\ &= \phi^{-1}(\emptyset)\\ &= \emptyset \end{align*} TODO

# Other Outlinks

# Encounters

  1. Caliu - Deep Learning Architectures - Appendix, unknown page
  2. Folland - Real Analysis - Ch 2, unknown page