Abhijeet Mulgund's Personal Webpage

Search

Search IconIcon to open search

Closure is Monotonic

Last updated Nov 6, 2022

# Statement

Let XX be a Topological Space. Suppose ABXA \subset B \subset X. Then clAclB\text{cl} A \subset \text{cl} B.

# Proof

Limit Points of a subset are Limit Points of the original Set so Limit Points of AA are Limit Points of BB. Since Closure of a Set is all its Limit Points, clA=xX:x is a limit point of AxX:x is a limit point of B=clB.\text{cl} A = {x \in X : x \text{ is a limit point of } A} \subset {x \in X : x \text{ is a limit point of } B} = \text{cl} B. \blacksquare

# Remarks

  1. If BB is Closed, then clAclB=B\text{cl} A \subset \text{cl} B = B so clAB\text{cl} A \subset B.