Cone
# Definition
Let $V$ be a Vector Space over $\mathbb{R}$ and suppose $S \subset V$. $S$ is a Cone if $\forall \mathbf{u} \in S$ and $\forall a \geq 0$, $$a \mathbf{u} \in S$$.
Search
Let $V$ be a Vector Space over $\mathbb{R}$ and suppose $S \subset V$. $S$ is a Cone if $\forall \mathbf{u} \in S$ and $\forall a \geq 0$, $$a \mathbf{u} \in S$$.