Abhijeet Mulgund's Personal Webpage

Search

Search IconIcon to open search

Distance Function

Last updated Nov 1, 2022

# Definition 1

Let $S$ be a Set. A Distance Function on $S$ is a Function of the form $d: S^{2} \to \mathbb{R}_{\geq 0}$ that satisfies the following properties:

  1. $d(x, y) = 0$ If and Only If $x = y$ $\forall x,y \in S$.
  2. $d(x, y) = d(y, x)$ $\forall x,y \in S$
  3. Triangle Inequality: $d(x, z) \leq d(x, y) + d(y, z)$ $\forall x,y,z \in S$

# Definition 2

An Extended Distance Function which is never $\infty$.