Equivalent Conditions for being a Stopping Time
# Statement
Suppose ${\mathcal{B}_{n} : n \in \mathbb{N} }$ is a Discrete-Time Filtration on $\Omega$. Let $\nu : \Omega \to \bar{\mathbb{N}}$. The following are Equivalent:
- $\nu$ is a Stopping Time.
- $[\nu \leq n] \in \mathcal{B}_{n}, \forall n \in \mathbb{N}$
- $[\nu > n] \in \mathcal{B}_{n}, \forall n \in \mathbb{N}$
# Proof
$(1) \Rightarrow (2)$: We have for $n \in \mathbb{N}$ $$[\nu \leq n] = \bigcup\limits_{m \leq n}[\nu =m] \in \mathcal{B}{n}$$ since $[\nu = m] \in \mathcal{B}{m} \subset \mathcal{B}_{n}$ $\forall m \leq n$. $\checkmark$
$(2) \Rightarrow (3)$: Let $n \in \mathbb{N}$. Since $[\nu \leq n] \in \mathcal{B}{n}$, we know by definition of Sigma Algebra that $[\nu > n] = [\nu \leq n]^{C} \in \mathcal{B}{n}$. $\checkmark$
$(3) \Rightarrow (1)$: Let $n \in \mathbb{N}$. Since $[\nu > n] \in \mathcal{B}{n}$ and because $\mathcal{B}{n}$ forms a Filtration, we have that $$[\nu = n] = [\nu > n-1] \cap ([\nu > n])^{C} \in \mathcal{B}_{n},$$ where $[\nu > 0] = \Omega$. $\checkmark$
$\blacksquare$
# Remarks
- Condition (3) is the same as saying $[\nu \geq n+1] \in \mathcal{B}_{n}$ $\forall n \in \mathbb{N}$.
# Encounters
- Resnick - A Probability Path Sect 10.7 pg 365
- Durret - Probability Theory and Examples pg 220 Sect 4.2