Abhijeet Mulgund's Personal Webpage

Search

Search IconIcon to open search

Frechet Derivative

Last updated Nov 1, 2022

# Definition

Suppose V,WV, W are Normed Vector Space

Normed Vector Space

Definition A is a XX equipped with a ||\cdot||....

11/7/2022

s and f:VWf: V \to W. Suppose for vVv \in V there exists TBL(V,W)T \in BL(V, W) s.t.

$$\lim\limits_{h \to 0} \frac{|f(v + h) - f(v) - Th|{W}}{|h|{V}} = 0$$

Then we say ff has Frechet Derivative

Frechet Derivative

Definition Suppose V,WV, W are s and f:VWf: V \to W. Suppose for vVv \in V there exists $T \in BL(V,...

11/7/2022

Dvf=TD_{v} f =T.

# Properties

# Continuity of ff

# Statement

If DvfD_{v} f exists for vVv \in V, then ff is Continuous Function

Continuous Function

Definition 1 Let (X,τ),(Y,ρ)(X, \tau), (Y, \rho) be s and let f:XYf: X \to Y be a . Then ff is...

11/7/2022

at vv. TODO

TODO

...

11/7/2022

# Proof

Existence of the Frechet Derivative

Frechet Derivative

Definition Suppose V,WV, W are s and f:VWf: V \to W. Suppose for vVv \in V there exists $T \in BL(V,...

11/7/2022

means $$\begin{align*} &&\lim\limits_{h \to 0} \frac{|f(v + h) - f(v) - Th|{W}}{|h|{V}} = 0\\ &\Rightarrow& 0 = \lim\limits_{h \to 0} \Big| \big( f(v + h) - f(v) - Th\big) - \mathbf{0}{W} \Big|{W}\\ \end{align*}$$ By definition of Function Limit

Function Limit

Definition Let (M,d1)(M,d{1}) and (N,d2)(N, d{2}) be two s. Let f:MNf: M \to N be a . Suppose there exists...

11/7/2022

, we have that $$\begin{align*} &\lim\limits_{h \to 0} \big( f(v + h) - f(v) - Th\big) = \mathbf{0}{W}\\ &\Rightarrow \lim\limits{h \to 0} \big( f(v + h) - f(v) \big) - \lim\limits_{h \to 0} Th = \mathbf{0}{W}\\ &\Rightarrow \lim\limits{h \to 0} \big( f(v + h) - f(v) \big) = \mathbf{0}_{W} \end{align*}$$ Where the last line follows because Bounded Linear Maps are Continuous (how to prove this?). The last line is the definition of continuity

Continuous Function

Definition 1 Let (X,τ),(Y,ρ)(X, \tau), (Y, \rho) be s and let f:XYf: X \to Y be a . Then ff is...

11/7/2022

and ff is Continuous Function

Continuous Function

Definition 1 Let (X,τ),(Y,ρ)(X, \tau), (Y, \rho) be s and let f:XYf: X \to Y be a . Then ff is...

11/7/2022

.