Abhijeet Mulgund's Personal Webpage

Search

Search IconIcon to open search

Frechet Derivative

Last updated Nov 1, 2022

# Definition

Suppose $V, W$ are Normed Vector Spaces and $f: V \to W$. Suppose for $v \in V$ there exists $T \in BL(V, W)$ s.t.

$$\lim\limits_{h \to 0} \frac{|f(v + h) - f(v) - Th|{W}}{|h|{V}} = 0$$

Then we say $f$ has Frechet Derivative $D_{v} f =T$.

# Properties

# Continuity of $f$

# Statement

If $D_{v} f$ exists for $v \in V$, then $f$ is Continuous Function at $v$. TODO

# Proof

Existence of the Frechet Derivative means $$\begin{align*} &&\lim\limits_{h \to 0} \frac{|f(v + h) - f(v) - Th|{W}}{|h|{V}} = 0\\ &\Rightarrow& 0 = \lim\limits_{h \to 0} \Big| \big( f(v + h) - f(v) - Th\big) - \mathbf{0}{W} \Big|{W}\\ \end{align*}$$ By definition of Function Limit, we have that $$\begin{align*} &\lim\limits_{h \to 0} \big( f(v + h) - f(v) - Th\big) = \mathbf{0}{W}\\ &\Rightarrow \lim\limits{h \to 0} \big( f(v + h) - f(v) \big) - \lim\limits_{h \to 0} Th = \mathbf{0}{W}\\ &\Rightarrow \lim\limits{h \to 0} \big( f(v + h) - f(v) \big) = \mathbf{0}_{W} \end{align*}$$ Where the last line follows because Bounded Linear Maps are Continuous (how to prove this?). The last line is the definition of continuity and $f$ is Continuous Function.