Frobenius Inner Product Space
# Definition
Let $\mathbb{R}^{n \times m}$ be the Matrix Vector Space over $\mathbb{R}$, and $\langle \cdot, \cdot \rangle$ be the Frobenius Inner Product. We call the Inner Product Space $(\mathbb{R}^{n \times m}, \langle \cdot, \cdot \rangle)$ the Frobenius Inner Product Space.