Hyperplane
# Definition
Let $V$ be an Inner Product Space over $\mathbb{R}$. A Hyperplane is a Set of the form $$H = {x : \langle x, a \rangle = b}$$ for any $a \in V$ and $b \in \mathbb{R}$.
# Remarks
- TODO - talk about the geometric interpretation, see Boyd - Convex Optimization - sect 2.2.1 page 27