Identity Function
# Definition
Let $X$ be a Set. The Identity Function on $X$ is the Function $\text{id}{X}: X \to X$ so that $\forall x \in X$, $\text{id}{X}(x) = x$.
Search
Let $X$ be a Set. The Identity Function on $X$ is the Function $\text{id}{X}: X \to X$ so that $\forall x \in X$, $\text{id}{X}(x) = x$.