Integer Linear Program
# Definition
Suppose $n, m \in \mathbb{N}$, $\mathbf{b}, \mathbf{c} \in \mathbb{R}^{n}$, $A \in \mathbb{R}^{m \times n}$, $F \subset \mathbb{Z}$. Then the Constrained Optimization Program
$$\begin{align*} &&\max \mathbf{c}^{T} \mathbf{x}\\ &\text{s.t.}&A \mathbf{x} \leq \mathbf{b}\\ &&\mathbf{x} \in F \end{align*}$$ is an Integer Linear Program
# Properties
- An Integer Linear Program is just a Linear Program where the nonnegativity constraint is replaced with an integrality contraint.
- Integer Linear Programming is NP-Complete.