Abhijeet Mulgund's Personal Webpage

Search

Search IconIcon to open search

Kolmogorov Convergence Criterion

Last updated Nov 1, 2022

# Statement

Let (Ω,B,P)(\Omega, \mathcal{B}, \mathbb{P}) be a Probability Space

and let $(X_{n}){n=1}^{\infty}$ be a Sequence

Sequence

Definition A f:NXf: \mathbb{N} \to X for some XX. It is usually denoted {xn}n=1X\{xn\}{n=1}^{\infty} \subset X or $(x{n}) \subset...

11/7/2022

of independent

Independence

...

11/7/2022

Centered Random Variable

Centered Random Variable

Definition Let (Ω,B,P)(\Omega, \mathcal{B}, \mathbb{P}) be a and let XX be a on Ω\Omega. We say that XX is...

11/7/2022

s on Ω\Omega. If $$\sum\limits
{n=1}^{\infty} \mathbb{E} (X_{n}^{2}) < \infty,then then \sum\limits_{n=1}^{\infty} X_{n}$$ converges almost surely

Almost Sure Convergence

Definition Suppose (Ω,M,P)(\Omega, \mathcal{M}, \mathbb{P}) is a and (Y,τ)(Y, \tau) is a . Suppose (Xn:ΩY)(X{n} : \Omega \to Y) is...

11/7/2022

.

# Other Outlinks