Kolmogorov Convergence Criterion
# Statement
Let be a Probability Space
...
and let $(X_{n}){n=1}^{\infty}$ be a Sequence of independent Centered Random Variables on . If $$\sum\limits{n=1}^{\infty} \mathbb{E} (X_{n}^{2}) < \infty,\sum\limits_{n=1}^{\infty} X_{n}$$ converges almost surely.Probability Space