Abhijeet Mulgund's Personal Webpage

Search

Search IconIcon to open search

Kolmogorov Strong Law of Large Numbers

Last updated Nov 1, 2022

# Statement

Let (Ω,B,P)(\Omega, \mathcal{B}, \mathbb{P}) be a Probability Space

and let $(X_{n}){n=1}^{\infty}$ be a Sequence

Sequence

Definition A f:NXf: \mathbb{N} \to X for some XX. It is usually denoted {xn}n=1X\{xn\}{n=1}^{\infty} \subset X or $(x{n}) \subset...

11/7/2022

of iid Random Variable

Random Variable

Definition Let (Ω,B,P)(\Omega, \mathcal{B}, \mathbb{P}) be a . A is a X:ΩRX: \Omega \to \mathbb{R}. Remarks Rather than say XX is...

11/7/2022

s on Ω\Omega. Let $S
{n} = \sum\limits_{i=1}^{n} X_{n}.Thenthereexists. Then there exists c \in \mathbb{R}s.t. s.t. \frac{S_{n}}{n} \to c$ a.s.

Almost Sure Convergence

Definition Suppose (Ω,M,P)(\Omega, \mathcal{M}, \mathbb{P}) is a and (Y,τ)(Y, \tau) is a . Suppose (Xn:ΩY)(X{n} : \Omega \to Y) is...

11/7/2022

If and Only If

If and Only If

...

11/7/2022

EX1<\mathbb{E}|X_{1}| < \infty, in which case c=E(X1)c = \mathbb{E}(X_{1}).

# Proof

TODO

- See thm 7.5.1 in Resnick - A Probability Path pg 220