Kolmogorov Strong Law of Large Numbers
# Statement
Let be a Probability Space
... ...
and let $(X_{n}){n=1}^{\infty}$ be a Sequence of iid Random Variables on . Let $S{n} = \sum\limits_{i=1}^{n} X_{n}c \in \mathbb{R}\frac{S_{n}}{n} \to c$ a.s. If and Only IfProbability Space
, in which case .If and Only If
# Proof
TODO ...
Link: Google Drive
Classes: ...
- See thm 7.5.1 in Resnick - A Probability PathTODO
pg 220Resnick - A Probability Path