Left Ordered Group
# Definition
Let $G$ be a Group and let $\leq$ be a Total Ordering on $G$. Then we say $G$ is a Left Ordered Group if $\forall g, h, h’ \in G$ $$h \leq h’ \Rightarrow gh \leq gh’$$
Search
Let $G$ be a Group and let $\leq$ be a Total Ordering on $G$. Then we say $G$ is a Left Ordered Group if $\forall g, h, h’ \in G$ $$h \leq h’ \Rightarrow gh \leq gh’$$