Liminf of Indicator Sequence is Indicator of Liminf
# Statement
Let $({A}{n}){n=1}^{\infty} \subset X$ be a Sequence of Sets. Then $$\liminf\limits_{n \to \infty} \mathbb{1}{A{n}} = \mathbb{1}{\liminf\limits{n \to \infty} A_{n}}.$$
# Proof
TODO similar to Limsup of Indicator Sequence is Indicator of Limsup