Abhijeet Mulgund's Personal Webpage

Search

Search IconIcon to open search

Limit of a Monotonic Set Sequence

Last updated Nov 1, 2022

# Definition

Let $({A}{n}){n=1}^{\infty}$ be a Sequence

Sequence

Definition A f:NXf: \mathbb{N} \to X for some XX. It is usually denoted {xn}n=1X\{xn\}{n=1}^{\infty} \subset X or $(x{n}) \subset...

11/7/2022

of Sets. Then if (An)(A_{n}) is Non-Decreasing Function limnAn=nNAn,\lim\limits_{n \to \infty} A_{n} = \bigcup\limits_{n \in \mathbb{N}} A_{n}, an if (An)(A_{n}) is Non-Increasing Function then limnAn=nNAn.\lim\limits_{n \to \infty} A_{n} = \bigcap\limits_{n \in \mathbb{N}} A_{n}.