Abhijeet Mulgund's Personal Webpage

Search

Search IconIcon to open search

Linear Program

Last updated Nov 1, 2022

TODO Build down deeper into general constrained optimization programs

# Definition

Suppose $n, m \in \mathbb{N}$, $\mathbf{b}, \mathbf{c} \in \mathbb{R}^{n}$, $A \in \mathbb{R}^{m \times n}$. Then the Constrained Optimization Program

$$\begin{align*} &&\max \mathbf{c}^{T} \mathbf{x}\\ &\text{s.t.}&A \mathbf{x} \leq \mathbf{b}\\ &&\mathbf{x} \geq 0 \end{align*}$$

# Properties

  1. The Feasible Set of a Linear Program is a Convex Polytope.
  2. TODO:
  3. Linear Programming is in P