Abhijeet Mulgund's Personal Webpage

Search

Search IconIcon to open search

Linearly Dependent

Last updated Nov 1, 2022

# Definition 1

Let $V$ be a Vector Space on Field $F$. Let $S \subset V$. $S$ is Linearly Dependent if there exists a finite subset ${\mathbf{a}{i}}{i=1}^{n}$ for some $n \in \mathbb{N}$ and constants $c_{1}, \dots, c_{n} \in F$ so that

  1. $c_{1} \mathbf{a}{1} + \cdots + c{n} \mathbf{a}_{n} = \mathbf{0}$
  2. $\exists i \in [n]$ so that $c_{i} \neq 0$

# Definition 2

Let $V$ be a Vector Space on Field $F$. Let $\mathbf{a}{1}, \dots, \mathbf{a}{n} \in V$ for some $n \in \mathbb{N}$. $\mathbf{a}{1}, \dots, \mathbf{a}{n}$ are Linearly Dependent if there exist constants $c_{1}, \dots, c_{n} \in F$ so that

  1. $c_{1} \mathbf{a}{1} + \cdots + c{n} \mathbf{a}_{n} = \mathbf{0}$
  2. $\exists i \in [n]$ so that $c_{i} \neq 0$

# Remarks