Open Ball
# Definition
Let $(M, d)$ be a Nonempty Metric Space and let $x \in M$. Then an Open Ball about $x$ of radius $\epsilon \in \mathbb{R}{>0}$ is the Set: $$B{\epsilon}(x) := {y \in M : d(x,y) < \epsilon}.$$
Search
Let $(M, d)$ be a Nonempty Metric Space and let $x \in M$. Then an Open Ball about $x$ of radius $\epsilon \in \mathbb{R}{>0}$ is the Set: $$B{\epsilon}(x) := {y \in M : d(x,y) < \epsilon}.$$