Order-Reversing Function
# Definition
Let $X, Y$ be Partial Orderings. Let $f: X \to Y$ be a Function. We say $f$ is order-reversing if for $x, x’ \in X$, $$x \leq x’ \Rightarrow f(x) \geq f(x’).$$
Search
Let $X, Y$ be Partial Orderings. Let $f: X \to Y$ be a Function. We say $f$ is order-reversing if for $x, x’ \in X$, $$x \leq x’ \Rightarrow f(x) \geq f(x’).$$