Partial Ordering
# Definition
Let $P$ be a Set and let $\leq$ be an Order Relation on $P$. Then $(P, \leq)$ is a Partial Ordering.
# Remarks
- We can define the Relation $<$ by simply stating for $x, y \in P$ that $x < y$ If and Only If $x \leq y$ and $x \neq y$.