Perfect Matching
# Definition
Let $G$ be an Undirected Graph and let $M \subset E(G)$ be a Matching on $G$. Then $M$ is a Perfect Matching if ${v \in V(G) : v \text{ is covered by }M} = V(G)$. That is, all vertices are covered by $M$.
Search
Let $G$ be an Undirected Graph and let $M \subset E(G)$ be a Matching on $G$. Then $M$ is a Perfect Matching if ${v \in V(G) : v \text{ is covered by }M} = V(G)$. That is, all vertices are covered by $M$.