Preorder Relation
# Definition
Let $P$ be a Set and let $R \subset P \times P$ be a Relation on $P$. Then $R$ is a Preorder Relation if
- Reflexitivity: $xRx$ for all $x \in P$
- Transitivity: Let $x,y,z \in P$. If $xRy$ and $yRz$ then $xRz$
Search
Let $P$ be a Set and let $R \subset P \times P$ be a Relation on $P$. Then $R$ is a Preorder Relation if