Regular Conditional Probability
# Definition
Let $(\Omega, \mathcal{B}, \mathbb{P})$ be a Probability Space. Then a Regular Conditional Probability on $(\Omega, \mathcal{B})$ is a Regular Conditional Distribution for $\text{id}_{\Omega}$.
Search
Let $(\Omega, \mathcal{B}, \mathbb{P})$ be a Probability Space. Then a Regular Conditional Probability on $(\Omega, \mathcal{B})$ is a Regular Conditional Distribution for $\text{id}_{\Omega}$.