Satisfaction Relation
# Definition 1
Let $\mathcal{L}$ be a Language, let $\mathcal{M}$ be an $\mathcal{L}$-structure, let $\phi$ be an $\mathcal{L}$-formula, and let $\sigma$ be an Assignment to $\mathcal{M}$. We inductively define $\mathcal{M} \models_{\sigma} \phi$ as
- If $\phi$ is $t_{1} = t_{2}$ for Terms $t_{1}, t_{2}$, then $\mathcal{M} \models_{\sigma} \phi$ if $t_{1}^{\mathcal{M}}[\sigma] = t_{2}^{\mathcal{M}}[\sigma]$.
- If $\phi$ is $R(t_{1}, \dots, t_{n_{R}})$, then $\mathcal{M} \models_{\sigma} \phi$ if $(t^{\mathcal{M}}{1} [\sigma], \dots, t^{\mathcal{M}}{n_{R}} [\sigma]) \in R^{\mathcal{M}}$.
- If $\phi$ is $\neg \psi$, then $\mathcal{M} \models_{\sigma} \phi$ if $\mathcal{M} \not\models_{\sigma} \psi$.
- If $\phi$ is $(\varphi \wedge \psi)$, for $\mathcal{L}$-formulas $\varphi$ and $\psi$, then $\mathcal{M} \models_{\sigma} \phi$ if $\mathcal{M} \models_{\sigma} \varphi$ and $\mathcal{M} \models_{\sigma} \psi$.
- If $\phi$ is $(\varphi \vee \psi)$, for $\mathcal{L}$-formulas $\varphi$ and $\psi$, then $\mathcal{M} \models_{\sigma} \phi$ if $\mathcal{M} \models_{\sigma} \varphi$ or $\mathcal{M} \models_{\sigma} \psi$.
- If $\phi$ is $\exists v \psi$, for Variable Symbol $v$, then $\mathcal{M} \models_{\sigma} \phi$ if there is some $a \in \mathcal{M}$ so that $\mathcal{M} \models_{\sigma[\frac{a}{v}]} \psi$.
- If $\phi$ is $\forall v \psi$, for Variable Symbol $v$, then $\mathcal{M} \models_{\sigma} \phi$ if for any $a \in \mathcal{M}$ we have that $\mathcal{M} \models_{\sigma[\frac{a}{v}]} \psi$.
If $\mathcal{M} \models_{\sigma} \phi$, we say that $\mathcal{M}$ satisfies $\phi$ under Assignment $\sigma$. We call $\models$ the Satisfaction Relation.
# Remarks
- This part also felt very circular to me, especially cases 3-7. However, now I look at it as an extension of the concept of an $\mathcal{L}$-structure. They are “interpretations” of the symbols we use.
- Although an Assignment has an Infinite Set as its Domain, when applied to a particular Formula, only finitely many Variable Symbols come into play. This is because Formulas are Finite.
# Definition 2
Let $\mathcal{L}$ be a Language, let $\mathcal{M}$ be an $\mathcal{L}$-Language Structure, and let $\phi$ be an $\mathcal{L}$-Formula. $\mathcal{M} \models \phi$ if $\mathcal{M} \models_{\sigma} \phi$ for all Assignments $\sigma$.
# Remarks
- This is equivalent to saying $\mathcal{M} \models_{\sigma} \phi$ for some Assignment $\sigma$ because of Sentence Satisfaction under one Assignment means Satisfaction under all Assignments.
# Definition 3
See Model