Sigma Algebra induced by an Indicator Function
# Statement
Let $X$ be a Set. Let $A \in \mathcal{P}(X)$. Then $$\sigma(1_{A}) = {\emptyset, A, A^{C}, X}$$
# Proof
We must check that $$\sigma(1_{A}) = {1_{A}^{-1}(E) : E \in \mathcal{B}(\mathbb{R}) } = {\emptyset, A, A^{C}, X}$$
Suppose $E \in \mathcal{B}(\mathbb{R})$. Then there are 4 possiblities
- $E \cap {0, 1} = \emptyset$: Then $1_{A}^{-1}(E) = \emptyset$.
- $E \cap {0, 1} = {0}$: Then $1_{A}^{-1}(E) = A^{C}$.
- $E \cap {0, 1} = {1}$: Then $1_{A}^{-1}(E) = A$.
- $E \cap {0, 1} = {0, 1}$: Then $1_{A}^{-1}(E) = X$.
Since these are the only 4 possibilities, we have that $$\sigma(1_{A}) = {1_{A}^{-1}(E) : E \in \mathcal{B}(\mathbb{R}) } = {\emptyset, A, A^{C}, X}$$ $\blacksquare$