Soft Classifier
# Definition
Let $(X, Y, n)$ be a Classification Problem. Then $g: \mathcal{D} \to [0,1]^{n}$ is a Soft Classifier if $\forall x \in \mathcal{D}$, $g(x)$ is a valid Distribution on $[n]$.
Search
Let $(X, Y, n)$ be a Classification Problem. Then $g: \mathcal{D} \to [0,1]^{n}$ is a Soft Classifier if $\forall x \in \mathcal{D}$, $g(x)$ is a valid Distribution on $[n]$.