Submartingale Last updated
Nov 1, 2022
Table of Contents Properties Remarks # Definition 1Let ( Ω , A , P ) (\Omega, \mathcal{A}, \mathbb{P}) ( Ω , A , P ) be a Probability Space
Probability Space
...
11/7/2022
. Let X : Ω → R T X: \Omega \to \mathbb{R}^{T} X : Ω → R T be an Adapted Process
Adapted Process
Definition
Let ( Ω , A , P ) (\Omega, \mathcal{A}, \mathbb{P}) ( Ω , A , P ) be a . Let X : Ω → S T X: \Omega \to S^{T} X : Ω → S T be a with ( S , Σ ) (S, \Sigma) ( S , Σ ) , and...
11/7/2022
wrt Filtration
Filtration
Definition
Let ( Ω , A , P ) (\Omega, \mathcal{A}, \mathbb{P}) ( Ω , A , P ) be a , let ( I , ≤ ) (I, \leq) ( I , ≤ ) be a . Let B i ⊂ A \mathcal{B}{i} \subset \mathcal{A} B i ⊂ A be s of...
11/7/2022
$\mathcal{F}{*} := (\mathcal{B} {t})_{t \in T}o n on o n \Omega. . . X$ is a Supermartingale
Supermartingale
Definition 1
Let ( Ω , A , P ) (\Omega, \mathcal{A}, \mathbb{P}) ( Ω , A , P ) be a . Let X : Ω → R T X: \Omega \to \mathbb{R}^{T} X : Ω → R T be an wrt $\mathcal{F}{*} :=...
11/7/2022
if it satisfies the following properties:
X t ∈ L 1 ( Ω ) X_{t} \in L^{1}(\Omega) X t ∈ L 1 ( Ω ) ∀ t ∈ T \forall t \in T ∀ t ∈ T $\mathbb{E}(X_{t} | \mathcal{B}{r}) \geq X {r}$ Almost Surely for any r ≤ t r \leq t r ≤ t . # PropertiesAn Adapted Process is a Supermartingale iff its negative is a Submartingale Expectations of a Submartingale are Non-Decreasing
Expectations of a Submartingale are Non-Decreasing
Statement
Let ( Ω , A , P ) (\Omega, \mathcal{A}, \mathbb{P}) ( Ω , A , P ) be a . Let ( X t ) t ∈ T (X{t}){t \in T} ( X t ) t ∈ T be a wrt $\mathcal{F}{*} := (\mathcal{B}{t}){t \in...
11/7/2022
# Definition 2Let ( Ω , A , P ) (\Omega, \mathcal{A}, \mathbb{P}) ( Ω , A , P ) be a Probability Space
Probability Space
...
11/7/2022
. Let X : Ω → R N X: \Omega \to \mathbb{R}^{\mathbb{N}} X : Ω → R N be an Adapted Process
Adapted Process
Definition
Let ( Ω , A , P ) (\Omega, \mathcal{A}, \mathbb{P}) ( Ω , A , P ) be a . Let X : Ω → S T X: \Omega \to S^{T} X : Ω → S T be a with ( S , Σ ) (S, \Sigma) ( S , Σ ) , and...
11/7/2022
wrt Filtration
Filtration
Definition
Let ( Ω , A , P ) (\Omega, \mathcal{A}, \mathbb{P}) ( Ω , A , P ) be a , let ( I , ≤ ) (I, \leq) ( I , ≤ ) be a . Let B i ⊂ A \mathcal{B}{i} \subset \mathcal{A} B i ⊂ A be s of...
11/7/2022
$\mathcal{F}{*} := (\mathcal{B} {n})_{n \in \mathbb{N}}o n on o n \Omega. . . X$ is a Submartingale
Submartingale
Definition 1
Let ( Ω , A , P ) (\Omega, \mathcal{A}, \mathbb{P}) ( Ω , A , P ) be a . Let X : Ω → R T X: \Omega \to \mathbb{R}^{T} X : Ω → R T be an wrt $\mathcal{F}{*} :=...
11/7/2022
if it satisfies the following properties:
X n ∈ L 1 ( Ω ) X_{n} \in L^{1}(\Omega) X n ∈ L 1 ( Ω ) ∀ n ∈ N \forall n \in \mathbb{N} ∀ n ∈ N ,$\mathbb{E}(X_{n+1} | \mathcal{B}{n}) \geq X {n}$ Almost Surely for any n ∈ N n \in \mathbb{N} n ∈ N . Like in Martingale
Martingale
Definition 1
Let ( Ω , A , P ) (\Omega, \mathcal{A}, \mathbb{P}) ( Ω , A , P ) be a . Let X : Ω → R T X: \Omega \to \mathbb{R}^{T} X : Ω → R T be an wrt $\mathcal{F}{*} :=...
11/7/2022
, Definition (2) and (1) are equivalent. The proof is very similar, except we also require Conditional Expectation is Non-Decreasing
Conditional Expectation is Non-Decreasing
Statement
Let ( Ω , G , P ) (\Omega, \mathcal{G}, \mathbb{P}) ( Ω , G , P ) be a and let B ⊂ G \mathcal{B} \subset \mathcal{G} B ⊂ G be a sub- of G \mathcal{G} G . Suppose $X{1}, X{2}...
11/7/2022
.