Abhijeet Mulgund's Personal Webpage

Search

Search IconIcon to open search

Submartingale

Last updated Nov 1, 2022

# Definition 1

Let (Ω,A,P)(\Omega, \mathcal{A}, \mathbb{P}) be a Probability Space

. Let X:ΩRTX: \Omega \to \mathbb{R}^{T} be an Adapted Process

Adapted Process

Definition Let (Ω,A,P)(\Omega, \mathcal{A}, \mathbb{P}) be a . Let X:ΩSTX: \Omega \to S^{T} be a with (S,Σ)(S, \Sigma), and...

11/7/2022

wrt Filtration

Filtration

Definition Let (Ω,A,P)(\Omega, \mathcal{A}, \mathbb{P}) be a , let (I,)(I, \leq) be a . Let BiA\mathcal{B}{i} \subset \mathcal{A} be s of...

11/7/2022

$\mathcal{F}{*} := (\mathcal{B}{t})_{t \in T}on on \Omega.. X$ is a Supermartingale

Supermartingale

Definition 1 Let (Ω,A,P)(\Omega, \mathcal{A}, \mathbb{P}) be a . Let X:ΩRTX: \Omega \to \mathbb{R}^{T} be an wrt $\mathcal{F}{*} :=...

11/7/2022

if it satisfies the following properties:

  1. XtL1(Ω)X_{t} \in L^{1}(\Omega) tT\forall t \in T
  2. $\mathbb{E}(X_{t} | \mathcal{B}{r}) \geq X{r}$ Almost Surely for any rtr \leq t.

# Properties

  1. An Adapted Process is a Supermartingale iff its negative is a Submartingale
  2. Expectations of a Submartingale are Non-Decreasing

    Expectations of a Submartingale are Non-Decreasing

    Statement Let (Ω,A,P)(\Omega, \mathcal{A}, \mathbb{P}) be a . Let (Xt)tT(X{t}){t \in T} be a wrt $\mathcal{F}{*} := (\mathcal{B}{t}){t \in...

    11/7/2022

# Definition 2

Let (Ω,A,P)(\Omega, \mathcal{A}, \mathbb{P}) be a Probability Space

. Let X:ΩRNX: \Omega \to \mathbb{R}^{\mathbb{N}} be an Adapted Process

Adapted Process

Definition Let (Ω,A,P)(\Omega, \mathcal{A}, \mathbb{P}) be a . Let X:ΩSTX: \Omega \to S^{T} be a with (S,Σ)(S, \Sigma), and...

11/7/2022

wrt Filtration

Filtration

Definition Let (Ω,A,P)(\Omega, \mathcal{A}, \mathbb{P}) be a , let (I,)(I, \leq) be a . Let BiA\mathcal{B}{i} \subset \mathcal{A} be s of...

11/7/2022

$\mathcal{F}{*} := (\mathcal{B}{n})_{n \in \mathbb{N}}on on \Omega.. X$ is a Submartingale

Submartingale

Definition 1 Let (Ω,A,P)(\Omega, \mathcal{A}, \mathbb{P}) be a . Let X:ΩRTX: \Omega \to \mathbb{R}^{T} be an wrt $\mathcal{F}{*} :=...

11/7/2022

if it satisfies the following properties:

  1. XnL1(Ω)X_{n} \in L^{1}(\Omega) nN\forall n \in \mathbb{N},
  2. $\mathbb{E}(X_{n+1} | \mathcal{B}{n}) \geq X{n}$ Almost Surely for any nNn \in \mathbb{N}.

# Remarks

  1. Like in Martingale

    Martingale

    Definition 1 Let (Ω,A,P)(\Omega, \mathcal{A}, \mathbb{P}) be a . Let X:ΩRTX: \Omega \to \mathbb{R}^{T} be an wrt $\mathcal{F}{*} :=...

    11/7/2022

    , Definition (2) and (1) are equivalent. The proof is very similar, except we also require Conditional Expectation is Non-Decreasing

    Conditional Expectation is Non-Decreasing

    Statement Let (Ω,G,P)(\Omega, \mathcal{G}, \mathbb{P}) be a and let BG\mathcal{B} \subset \mathcal{G} be a sub- of G\mathcal{G}. Suppose $X{1}, X{2}...

    11/7/2022

    .