Abhijeet Mulgund's Personal Webpage

Search

Search IconIcon to open search

Sum of Independent Random Variables is in L1 if and only if Random Variables are in L1

Last updated Nov 1, 2022

# Statement

Suppose $(\Omega, \mathcal{M}, \mathbb{P})$ is a Probability Space and $X, Y$ are independent Random Variables on $\Omega$. Then $X+Y \in L^{1}(\Omega)$ If and Only If $X, Y \in L^{1}(\Omega)$.

# Proof

($\Leftarrow$): This is the easy direction. Suppose $X \in L^{1}$ and $Y \in L^{1}$. Since Lp Spaces are Vector Spaces, we have that $X + Y \in L^{1}$ $\checkmark$

($\Rightarrow$): Suppose $X+Y \in L^{1}$. Recall from the definition of L1 Integrable Functions, this means $$\int\limits_{\Omega} |X(\omega)+Y(\omega)| d \mathbb{P}(\omega) < \infty$$ Since $(X, Y)$ are independent, they induce a product measure $F_{X,Y}$ on $\mathbb{R}^{2}$ where for $A,B \in \mathbb{R}$, $F_{X,Y}(A \times B) = F_{X}(A)F_{Y}(B)$ ($F_{X}$ and $F_{Y}$ are the Induced Probability Measure of $X$ and $Y$ respectively). Furthermore

$$\begin{align*} \int\limits_{\Omega} |X(\omega)+Y(\omega)| d \mathbb{P}(\omega) &= \int\limits_{\mathbb{R}^{2}} |x+y| F_{X,Y}(d(x,y))\\ &=\int\limits_{\mathbb{R}} \left[\int\limits_{\mathbb{R}} |x+y| F_{X}(dx)\right] F_{Y}(dy) \end{align*}$$ and $y \mapsto \int\limits_{\mathbb{R}} |x+y| F_{X}(dx) \in L^{1}(\Omega)$ by Fubini’s Theorem. Thus, for $y \in \mathbb{R}$ Almost Everywhere we have that $\int\limits_{\mathbb{R}} |x+y| F_{X}(dx) < \infty$. Pick some such $y \in \mathbb{R}$. Then

$$\begin{align*} \int\limits_{\Omega} |X(\omega)| d \mathbb{P}(\omega) &= \int\limits_\mathbb{R} |x| F_{X}(dx)\\ &=\int\limits_\mathbb{R} |x+y-y| F_{X}(dx)\\ &\leq \int\limits_\mathbb{R} |x+y| F_{X}(dx) + \int\limits_\mathbb{R} |y| F_{X}(dx)\\ &=\int\limits_\mathbb{R} |x+y| F_{X}(dx) + |y|\\ &< \infty \end{align*}$$ and $X \in L^{1}(\Omega)$. Swap $X$ and $Y$ to get the same result for $Y$. $\checkmark$ $\blacksquare$

# Other Outlinks