Surjection
# Definition
Let $X$, $Y$ be Sets. Then a Function $f: X \to Y$ is a Surjection if $f(X) = Y$. That is, for each $y \in Y$, there exists $x \in X$ so that $f(x) = y$.
Search
Let $X$, $Y$ be Sets. Then a Function $f: X \to Y$ is a Surjection if $f(X) = Y$. That is, for each $y \in Y$, there exists $x \in X$ so that $f(x) = y$.