Symmetric Matrix
# Definition
Suppose $n \in \mathbb{N}$ and $A \in F^{n \times n}$ for some Field $F$. Then we say $A$ is a Symmetric Matrix if $A^{T} = A$
Search
Suppose $n \in \mathbb{N}$ and $A \in F^{n \times n}$ for some Field $F$. Then we say $A$ is a Symmetric Matrix if $A^{T} = A$