Upper Bound
# Definition
Let $(P, \leq)$ be a Partial Ordering and let $A \subset P$. $x \in P$ is an Upper Bound for $A$ if $\forall a \in A$, $p \geq a$.
Search
Let $(P, \leq)$ be a Partial Ordering and let $A \subset P$. $x \in P$ is an Upper Bound for $A$ if $\forall a \in A$, $p \geq a$.